

Learning from Child-directed Speech in Two-language Scenarios: A French-English Case Study

Liel Binyamin, Elior Sulem

Faculty of Computer and Information Science, Institute for Applied AI Research
Data Science Research Center
Ben-Gurion University of the Negev
lielbin@post.bgu.ac.il, eliorsu@bgu.ac.il

Abstract

Research on developmentally plausible language models has so far centered on English, leaving open questions about multilingual settings. We present a systematic study of compact models by extending BabyBERTa to English–French scenarios under strictly size-matched data conditions, addressing *monolingual*, *bilingual*, and *cross-lingual* settings. Our design contrasts two corpus types: (i) child-directed speech (≈ 2.5 M tokens), following BabyBERTa and related work, and (ii) multi-domain corpora (≈ 10 M tokens), extending the BabyLM framework to French. To support fair evaluation, we also introduce new resources: French versions of QAMR and QASRL, and an English and French multi-domain corpus. We evaluate the models on both syntactic and semantic tasks, comparing with Wikipedia-only training. Results reveal context-dependent effects: training on Wikipedia consistently favors semantic tasks, while child-directed speech improves grammatical judgments in monolingual settings. Bilingual pretraining yields notable gains for textual entailment, disproportionately benefiting French. Importantly, the same relative patterns are observed across BabyBERTa, RoBERTa, and LTG-BERT, indicating consistent trends across the tested architectures.¹

1 Introduction

Training efficient language models with limited computational resources presents a fundamental challenge in natural language processing. While large-scale models have achieved impressive performance, their computational demands—requiring massive datasets and substantial processing power—make them inaccessible for many research contexts and real-world applications. This challenge is particularly acute for multilingual settings, where resource constraints

¹Code and data are available at <https://github.com/NLU-BGU/Compact-Multilingual-LMs>.

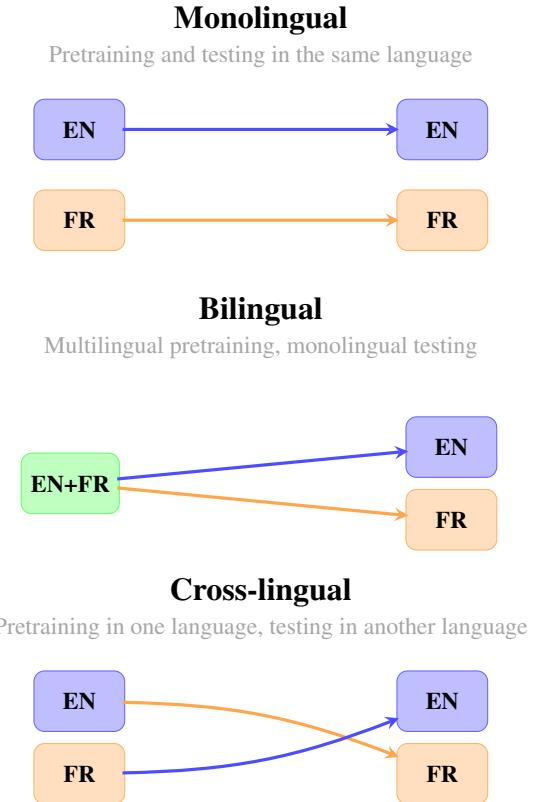


Figure 1: Monolingual, bilingual, and cross-lingual settings. Left column shows the *pretraining* language(s); right column shows the *testing* language, and these labels apply to all three settings. For downstream QA/TE experiments, fine-tuning is performed in the same language as testing.

are compounded by the need to support multiple languages. Beyond practical concerns, efficient language model training offers insights into language acquisition: if models can achieve linguistic competence with human-scale data, they provide controlled empirical settings that can inform future theory-driven work on child language acquisition.

Recent work has demonstrated promising approaches to this challenge. The BabyBERTa model (Huebner et al., 2021) showed that compact architectures trained on just 5 million words of

child-directed speech could match larger models’ grammatical proficiency while dramatically reducing computational costs. The BabyLM Challenge (Warstadt et al., 2023) further established that developmentally plausible training corpora—approximating the linguistic input children receive—can produce models with strong capabilities under significant resource constraints. These studies validate that carefully curated, human-scale datasets enable efficient language model training.

However, gaps remain. First, these foundational studies have focused mainly on monolingual English settings, leaving cross-linguistic validity underexplored. Second, evaluations of models exclusively trained on child-directed speech have concentrated primarily on grammatical competence, with limited investigation of semantic understanding through tasks like question-answering and textual entailment. Third, while some recent work has explored bilingual scenarios (Yadavalli et al., 2023; Shen et al., 2024), these studies employ sequential pretraining (L1 then L2) and evaluate only in English, rather than examining simultaneous bilingual exposure and balanced cross-linguistic evaluation. These limitations prevent understanding whether efficiency gains generalize across languages and whether small models can achieve deeper semantic understanding.

We address these gaps through systematic investigation of training in two-language scenarios with BabyBERTa, focusing on English and French. We examine three experimental configurations (Figure 1): (1) *monolingual*—comparing monolingual pretraining in English and French with matched data; (2) *bilingual*—simultaneous exposure to both languages during pretraining; (3) *cross-lingual*—pretraining in one language, evaluation in another. Our key methodological innovation is establishing fair cross-linguistic comparisons through two types of corpora: (1) **child-directed speech corpora** (≈ 2.5 M words, constrained by French CHILDES availability), representing developmentally realistic input, alongside matched Wikipedia-only corpora for comparison; and (2) **multi-domain corpora** (≈ 10 M words, following the BabyLM framework but adapting it to an English-French comparison), representing broader and more heterogeneous input. This reframing emphasizes the nature of the training data rather than size alone, while still maintaining comparability across scales. We also introduce French versions of the QAMR (Michael et al., 2018) and QASRL (He

et al., 2015) evaluation datasets, enabling balanced cross-linguistic testing.

Our evaluation moves beyond grammar-focused assessments to semantic understanding tasks: question-answering (SQuAD (Rajpurkar et al., 2016), QASRL (He et al., 2015), QAMR (Michael et al., 2018)), textual entailment (XNLI, Conneau et al., 2018), and grammatical competence (CLAMS, Mueller et al., 2020). The choice of including question-answering is motivated by natural alignment with our training data—CHILDES provides abundant conversational Q&A interactions (179,953 in English, 132,133 in French), making question-answering evaluation well-suited to child-directed speech pretraining. We establish strong baselines through comparisons with RoBERTa models trained on our configurations and pretrained models (RoBERTa-base (Zhuang et al., 2021), CamemBERT (Martin et al., 2020)). We also conduct supplementary analyses with LTGBERT (Samuel et al., 2023), on which the top BabyLM Challenge performer is based, and on T5-tiny (Mueller and Linzen, 2023) to examine whether the observed patterns extend beyond a single architecture.

Our results demonstrate that (1) bilingual training disproportionately benefits textual entailment in the weaker language, (2) French benefits from exposure to child-directed speech when combined with Wikipedia training, and (3) small-scale multilingual models can acquire meaningful semantic capabilities beyond grammatical competence, with consistent patterns observed across the tested architectures considered here.

2 Related Work

Child-Directed Speech Models The BabyBERTa model (Huebner et al., 2021) demonstrated that child-directed speech (CDS) could train efficient language models with strong grammatical proficiency despite limited data and computational resources. A compact RoBERTa architecture trained on just 5 million words of CDS achieved comparable grammatical competence to much larger models, establishing the feasibility of developmentally plausible language model training. Mueller and Linzen (2023) further demonstrated that pre-training on child-directed speech induces hierarchical syntactic biases in small encoder-decoder models with order-of-magnitude less data than typical web text or Wikipedia corpora, suggesting greater data efficiency in cognitively plausible acquisition

settings. However, these works focused on English and on grammatical competence rather than semantic understanding tasks. Extensions of these studies to other languages include [Bunzeck et al. \(2025\)](#) for German and [Gelboim and Sulem \(2025\)](#) for Hebrew. [Yang et al. \(2023\)](#) evaluated models trained on English CDS on downstream tasks, covering Semantic Role Labeling, QASRL, and QAMR.

BabyLM Challenge and Multidomain Training
The BabyLM Challenge ([Warstadt et al., 2023](#)) extended efficient language model training by promoting development of small-scale models optimized for language acquisition scenarios using multidomain corpora. The challenge, which includes both grammatical (BLiMP, [Warstadt et al., 2020](#)) and downstream task (GLUE, [Wang et al., 2018](#)) evaluation, demonstrated that various architectural innovations could enhance learning efficiency within constrained data settings, using diverse developmentally plausible sources beyond child-directed speech alone. ELC-BERT ([Charentier and Samuel, 2023](#)) emerged as the winning model, representing a paradigm shift toward architectural optimization over data scaling. ELC-BERT is based on the LTG-BERT model ([Samuel et al., 2023](#)). Training on the British National Corpus (100 million words), LTG-BERT incorporated four key innovations: NormFormer normalization, GEGLU activation functions, disentangled attention, and span masking. Despite using significantly smaller corpora than standard models, LTG-BERT demonstrated that careful architectural design can achieve strong language understanding with developmentally plausible data amounts. [Wilcox et al. \(2025\)](#) found that ELC-BERT and LTG-BERT achieve comparable performance, concluding that it is the innovations incorporated in LTG-BERT that led to the win.

Our work extends this line of research by investigating whether efficiency gains observed in monolingual settings transfer to two-language scenarios, focusing on English and French. We consider both CDS-only and multidomain setups and include extractive question answering of various levels of complexity in the evaluation. While RoBERTa serves as our main baseline, we also include LTG-BERT as a competitive reference point in the case of multidomain training.

Multilingual and Cross-Lingual Training in Small Models Several studies have explored cross-lingual transfer in neural language models

with different focuses than our work. SLABERT ([Yadavalli et al., 2023](#)) investigated cross-lingual transfer by pretraining BERT models on CDS data in multiple languages before transitioning to Adult-Directed Speech in English, evaluating transfer effects using grammatical judgment tasks (BLiMP). Research on second language acquisition in neural models ([Oba et al., 2023](#)) followed a three-step process of L1 pretraining, L2 continual training, and grammatical evaluation, while work on modeling nonnative sentence processing ([Aoyama and Schneider, 2024](#)) examined how L1 influences L2 processing through reading-time analysis. BAMBINO-LM ([Shen et al., 2024](#)) explored bilingual pretraining through continuous learning, where a small model was incrementally trained on a second language with guidance from a larger parent model, simulating human bilingual acquisition through sequential L1-to-L2 training.

These studies differ from our work in key aspects. All employ sequential pretraining paradigms (L1 then L2) rather than examining simultaneous bilingual exposure as occurs in natural child bilingual acquisition. They focus primarily on grammatical competence evaluation and conduct evaluations exclusively in English (except BAMBINO-LM, which evaluates separately in English and Italian), even when models are pretrained on multiple languages. When using different L1 languages during pretraining, they examine how distinct L1 backgrounds affect English L2 acquisition rather than evaluating true multilingual competence across languages. Our work addresses these gaps by systematically comparing monolingual, bilingual, and cross-lingual configurations while focusing on semantic tasks. Unlike prior work examining how different source languages affect English acquisition, we investigate how models perform when pretrained and evaluated on the same data types across target languages, mirroring bilingual child language acquisition with similar input types in both languages.

3 Data

A central challenge in multilingual language modeling is ensuring fair cross-linguistic comparisons. Prior work has often compared models trained on datasets of different sizes or composition across languages, making it difficult to isolate the effect of language itself ([Yadavalli et al., 2023; Shen et al., 2024](#)). We address this challenge by constructing strictly size-matched English and French corpora

and evaluating monolingual, bilingual, and cross-lingual training under controlled conditions.

3.1 Pre-training Data

We use two types of pre-training corpora: (i) child-directed speech datasets at a 2.5M-token scale, and (ii) multi-domain developmental corpora at a 10M-token scale. For each corpus type, we construct monolingual English and French datasets as well as balanced bilingual variants, ensuring that total token counts are matched across training setups.

Child-directed speech (2.5M tokens). We construct child-directed speech (CDS) datasets from the CHILDES database (MacWhinney, 2000). The English CDS corpus consists of 2.5M tokens sampled from AO-CHILDES (Huebner and Willits, 2021), and the French CDS corpus consists of 2.5M tokens sampled from MAO-CHILDES, released with the SLABERT project (Yadavalli et al., 2023). These corpora are independent and are not supplemented with other data sources.

For bilingual CDS training, we construct balanced datasets containing 1.25M tokens from English CHILDES and 1.25M tokens from French CHILDES, matching the total size of the monolingual corpora. This design enables controlled comparisons of monolingual, bilingual, and cross-lingual learning under developmentally plausible input conditions.

Wikipedia (2.5M tokens). To compare child-directed and non-child-directed input, we also construct Wikipedia-only corpora. We independently sample 2.5M tokens from English Wikipedia and 2.5M tokens from French Wikipedia, preserving sentence boundaries. Bilingual Wikipedia datasets consist of 1.25M tokens per language. These corpora serve as matched-size baselines and are treated as a separate training condition rather than as supplements to CHILDES.

Multi-domain developmental corpora (10M tokens). Following the BabyLM Challenge framework (Warstadt et al., 2023), we construct multi-domain developmental corpora at a 10M-token scale. We create two independent corpora—one in English and one in French—each composed of conversational, literary, and encyclopedic sources, with matched domain proportions (Table 1). In addition, we construct balanced bilingual multi-domain corpora by combining 5M tokens from English and 5M tokens from French. All multi-domain corpora

follow the BabyLM *Strict-Small* domain configuration, ensuring comparable lexical diversity and register coverage across languages.

3.2 Fine-tuning Data

SQuAD1.1 is a widely used English reading comprehension dataset with over 100k QA pairs from Wikipedia (Rajpurkar et al., 2016). For French evaluation, we adopt FQuAD1.0 (Kabbadj et al., 2020), a high-quality translation of SQuAD produced with Google Translate and refined through alignment procedures. Post-processing ensured that translated answers matched their contexts, with Levenshtein distance and Jaro-Winkler similarity used to adjust misaligned spans.

Because French versions of QASRL and QAMR are not available, we construct French counterparts (Fr-QASRL and Fr-QAMR) using automatic translation and validation. Specifically, the English datasets are translated into French using Google Translate, followed by the alignment of translated answer spans to contexts using string similarity metrics (Levenshtein distance and Jaro-Winkler similarity), and automatic filtering based on embedding similarity. Sentence pairs with SentenceBERT similarity below 0.75 are discarded, following Lin et al. (2021). Both English and French versions are partitioned into standard train/dev/test splits.

For textual entailment, we employ the XNLI benchmark (Conneau et al., 2018), which extends MultiNLI (Williams et al., 2018) to 15 languages including English and French. This dataset evaluates whether models can recognize entailment, contradiction, or neutrality between premise–hypothesis pairs and provides a robust test of cross-lingual reasoning.

3.3 Evaluation Data

To complement semantic evaluation, we also test grammatical competence using CLAMS (Mueller et al., 2020), a multilingual syntactic evaluation suite based on minimal pairs, which includes English and French.

CLAMS covers a range of syntactic phenomena, with particular emphasis on subject–verb agreement, and allows models to be assessed directly

^{*}Claire French Dialogue Dataset (CFDD) and British National Corpus (dialogue portion).

[†]<https://github.com/jchwenger/dataset.gutenberg-language> – Gutenberg texts filtered by author metadata in English and French.

[‡]<https://www.vikidia.org> – simplified encyclopedia used in both French and English.

Dataset (French and English)	Domain	# Words	Proportion
CHILDES (MacWhinney 2000)	Child-directed speech	0.50M	5%
CFDD (FR) ¹ / BNC (EN) ¹	Dialogue	0.90M	9%
Children’s Book Corpus (Hill et al. 2016)	Children’s books	0.90M	9%
Gutenberg Corpus ²	Written prose	1.00M	10%
OpenSubtitles (Lison and Tiedemann 2016)	Movie subtitles	3.00M	31%
QED (Abdelali et al. 2014)	Educational video subtitles	1.10M	11%
<i>Wikipedia</i>	<i>Wikipedia</i> (standard)	1.00M	10%
<i>Vikidia</i> ³	Simplified encyclopedia	1.50M	15%
Total	—	9.90M	100%

Table 1: Composition of our 10M-word pre-training corpora in French and English. Sentence boundaries were respected, so totals fall slightly below 10M words. Domain proportions follow the BabyLM *Strict-Small* configuration.

without additional fine-tuning.

For all downstream tasks, except SQuAD, for which the evaluation is done on the development (dev) set, we perform evaluation using dedicated dev sets for model selection and report results on the corresponding test sets.

4 Methodology

We design controlled experiments to investigate how language composition, data sources, and training configurations affect model performance in resource-constrained multilingual settings. Our framework addresses two research questions: (1) whether competencies transfer across languages, (2) how monolingual, bilingual, and cross-lingual paradigms compare.

4.1 Experimental Design

We conduct experiments across the data settings described in Section 3, systematically varying language configuration (monolingual, bilingual, cross-lingual) and corpus type (child-directed vs. multi-domain). All experiments are repeated with three random seeds, and results are reported as averages. Reduced 1.25M CDS subsets are also used to explore scaling effects (see Appendix B).

4.2 Language Pairing Strategies

We evaluate three setups (Figure 1). In the *monolingual* setup, models are pretrained and tested in the same language, including mixed CDS–Wikipedia datasets and ordering effects. In the *bilingual* setup, models are exposed to English and French simultaneously, testing whether multilingual pretraining improves monolingual performance. In the *cross-lingual* setup, models are pretrained in one language and tested in the other, providing a direct test of transfer across languages and corpus types.

Fine-tuning, which is performed in the question-answering and textual entailment tasks, is always done in the same language as testing.

4.3 Baseline Comparisons

Our main baselines consist of RoBERTa models retrained from scratch on our 2.5M-token child-directed and Wikipedia datasets, using the same training setup as BabyBERTa. In addition, for the monolingual and cross-lingual setups, we also include the original pretrained RoBERTa-base (English) and CamemBERT-base (French) models, which serve as large-scale reference points. This distinction enables controlled comparison between small-scale retraining and full-scale pretraining approaches.

4.4 Evaluation Framework

Model performance is measured using F1 for question answering tasks, accuracy for XNLI, and pseudo-log-likelihood scoring for CLAMS (Salazar et al., 2020), following the BabyBERTa evaluation protocol for masked language model scoring. All reported scores are averages over three runs with different random seeds.

Statistical significance is assessed using paired bootstrap hypothesis testing across seeds, with a significance threshold of $p < 0.05$. For each comparison discussed in the paper, we evaluate whether the observed performance difference is statistically reliable under resampling. In the main text, we report and interpret only differences that meet this significance threshold; differences that do not reach statistical significance are included in the tables but omitted from the narrative.

Model (pretrain)	SQuAD		QAMR		QASRL		XNLI		CLAMS	
	BB	RB	BB	RB	BB	RB	BB	RB	BB	RB
Tested in English										
<u>MONOLINGUAL</u>										
En-CHILDES	23.35	23.88	38.54	49.01	84.80	88.16	55.71	61.27	58.77	54.36
En-Wikipedia (baseline)	45.59	34.72	56.41	62.66	88.09	88.42	61.70	66.83	50.32	52.71
<u>BILINGUAL</u>										
En-Fr-CHILDES	19.96	25.18	38.71	47.82	85.32	87.94	56.29	59.42	53.92	52.08
En-Fr-Wikipedia (baseline)	34.72	33.74	56.12	59.07	87.49	87.67	65.25*	65.73	63.10*	52.93
<u>CROSS-LINGUAL</u>										
Fr-CHILDES	23.62	14.76	31.35	41.84	76.43	86.73	51.08	55.31	51.86	50.92
Fr-Wikipedia (baseline)	32.51	21.11	50.53	38.75	86.04	85.39	65.13	60.17	50.34	51.76
Tested in French										
<u>MONOLINGUAL</u>										
Fr-CHILDES	22.85	13.38	31.75	37.78	64.41	70.70	28.27	64.13	59.51	61.82
Fr-Wikipedia (baseline)	30.23	13.68	32.90	32.40	65.71	65.08	37.88	65.52	50.96	53.18
<u>BILINGUAL</u>										
En-Fr-CHILDES	22.76	18.02	29.97	36.20	63.43	69.40	54.96	60.19	58.88	52.38
En-Fr-Wikipedia (baseline)	32.59	30.52	41.08*	40.88	68.41*	69.67	61.74*	66.08	60.11*	53.97
<u>CROSS-LINGUAL</u>										
En-CHILDES	19.60	10.42	23.63	30.13	58.93	65.13	30.30	56.28	51.01	52.01
En-Wikipedia (baseline)	28.93	24.09	33.79	38.09	63.89	69.20	33.01	64.41	51.63	53.07

Table 2: F1 scores for **BabyBERTa (BB)** vs. **RoBERTa (RB)** across tasks using **child-directed speech and Wikipedia corpora** ($\approx 2.5M$ words). Sections indicate the language in which the model was *tested*, with downstream fine-tuning always performed in that same language. * indicates statistically significant improvements over the corresponding monolingual baseline ($p < 0.05$, paired bootstrap test across seeds).

5 Results

Our experiments reveal a set of consistent, setting-dependent patterns in multilingual pretraining under resource constraints (Tables 2, 3). Given the large number of experimental conditions, we report all results in the tables, but restrict the discussion to effects that are statistically significant under paired bootstrap testing where applicable. We organize the discussion around a small number of recurring patterns that appear across tasks, data scales, and model variants.

5.1 Language-Specific Performance Asymmetries

English consistently outperforms French across QA, XNLI, and CLAMS, even with matched data size and type, suggesting structural or dataset-level differences rather than training corpus artifacts.

5.2 Data Source Effects

Wikipedia-trained models excel on QA and entailment, reflecting stronger factual alignment, while CHILDES-trained models perform better on CLAMS, confirming that conversational data supports grammatical learning. Corpus type thus deter-

mines whether models favor semantic or syntactic competence.

5.3 Language Pairing Strategy Comparisons

5.3.1 Bilingual vs. Monolingual Performance

Bilingual pretraining outperforms monolingual approaches under specific conditions (Table 2):

XNLI Task: Bilingual training shows substantial advantages for textual entailment in both languages. For French, improvements are dramatic (En-Fr-Wikipedia: 61.74 vs. Fr-Wikipedia: 37.88). For English, bilingual pretraining also outperforms monolingual baselines (En-Fr-Wikipedia: 65.25 vs. En-Wikipedia: 61.70).

English QA with CHILDES: Bilingual pretraining enhances QASRL and QAMR performance when using conversational data, suggesting multilingual exposure benefits English semantic understanding. However, this advantage does not extend to Wikipedia-based pretraining.

French QA with Wikipedia: The pattern reverses for French—bilingual benefits appear only for Wikipedia-based pretraining on question-answering tasks.

Grammatical Competence: For CLAMS, bilingual settings reverse the monolingual pattern where CHILDES outperforms Wikipedia. In bilingual training, Wikipedia-based models excel (En-Fr-Wikipedia: 63.10 vs. En-Fr-CHILDES: 53.92 for English; 60.11 vs. 58.88 for French), suggesting Wikipedia’s consistent register facilitates cross-linguistic grammatical generalization better than varied conversational patterns.

Cross-lingual Transfer. Cross-lingual models usually trail monolingual ones slightly but with small gaps and occasional reversals—e.g., French XNLI after English CHILDES pretraining: 30.30 vs. 28.27 monolingual—showing that transfer limitations are modest.

5.4 Corpus Type Analysis: Child-Directed Speech vs. Multi-domain

5.4.1 Domain Consistency vs. Diversity Effects

At $\approx 10M$ tokens (Table 3), Wikipedia-only and multi-domain setups exhibit clear task-dependent trends. Wikipedia outperforms multi-domain corpora on SQuAD and QAMR, performs comparably on QASRL and XNLI, but falls behind on CLAMS (English: 55.90 vs. 53.12; French: 61.13 vs. 57.87). Domain diversity thus strengthens syntactic robustness, while the homogeneous Wikipedia text is preferable for factual and entailment-oriented reasoning.

5.4.2 Language Strategy Preferences by Corpus Type

In contrast to the 2.5M-token CHILDES setting, where bilinguality sometimes helps, monolingual setups dominate most 10M-token multi-domain configurations. The exception is XNLI, where bilingual advantages persist even at larger scales, indicating that multilingual exposure continues to benefit entailment beyond data quantity effects.

5.4.3 RoBERTa vs. BabyBERTa: Architecture-Specific Patterns

Both architectures were retrained on identical datasets (Tables 2, 3). BabyBERTa performs better on cross-lingual SQuAD and QAMR and exceeds RoBERTa on CLAMS in bilingual setups, indicating that its compact, developmentally constrained design benefits grammatical abstraction and efficient transfer. Across both models, CHILDES favors CLAMS, whereas Wikipedia leads on SQuAD, QAMR, and XNLI—implying that data type, not

architecture size, chiefly determines semantic versus syntactic focus.

5.4.4 Large-Scale Reference Baselines

The original pretrained RoBERTa-base and CamemBERT-base achieve the highest absolute scores—88–90% F1 and 82% XNLI for English; 84% F1 and 78% XNLI for French—serving as upper bounds. In the cross-lingual setups, they are less efficient than smaller pretrained models. Notably, BabyBERTa and small RoBERTa (2.5M–10M tokens) achieve higher normalized gains and replicate key trends—CHILDES surpassing Wikipedia on grammar and bilinguality boosting XNLI.

5.5 Implications for Multilingual Resource-Constrained Pretraining

Our results reveal three setting-specific patterns that clarify when and how multilingual training is beneficial under resource constraints. First, at the 2.5M-token scale, bilingual pretraining yields compensatory gains on semantic inference tasks such as XNLI, with the strongest improvements observed for the weaker language (French). These gains are most pronounced in low-data regimes, where cross-lingual exposure provides information that is unavailable in limited monolingual input.

Second, child-directed speech primarily supports grammatical competence in monolingual settings, while its contribution to semantic tasks emerges when combined with broader-domain text. Exposure to child-directed speech interacts positively with encyclopedic data such as Wikipedia, yielding improvements over CHILDES-only training and partially mitigating transfer losses, particularly for French and for transfer-sensitive tasks.

Third, increasing the data scale to 10M tokens reduces the relative impact of bilinguality on semantic performance, but does not reverse it. While monolingual models trained on larger multi-domain corpora often dominate in absolute performance, modest bilingual advantages persist for semantic inference, indicating that the benefits of multilingual exposure weaken with scale but remain detectable.

Taken together, these patterns show that compact models trained on developmentally plausible data can achieve meaningful cross-linguistic generalization, but that the effectiveness of multilingual training depends critically on data scale, corpus composition, and task demands.

Model (pretrain)	SQuAD		QAMR		QASRL		XNLI		CLAMS	
	BB	RB	BB	RB	BB	RB	BB	RB	BB	RB
Tested in English										
<u>MONOLINGUAL</u>										
En-Multidomain	30.93	43.70	52.66	66.45	85.87	89.06	64.03	68.44	55.90	58.19
En-Wikipedia (baseline)	40.42	46.12	55.58	68.93	88.21	89.41	65.04	69.32	53.12	56.71
<u>BILINGUAL</u>										
En-Fr-Multidomain	16.64	36.35	44.96	49.77	78.35	88.76	65.12	66.21	51.56	54.37
En-Fr-Wikipedia (baseline)	28.24	38.12	55.47	57.04	74.01	89.02	71.31*	71.06	50.14	53.21
<u>CROSS-LINGUAL</u>										
Fr-Multidomain	27.31	32.18	42.51	55.40	81.25	88.19	57.72	63.57	50.22	53.64
Fr-Wikipedia (baseline)	30.30	34.05	47.51	57.22	83.87	88.61	66.47	66.18	50.07	52.98
Tested in French										
<u>MONOLINGUAL</u>										
Fr-Multidomain	29.24	32.95	39.05	46.44	67.28	71.17	66.02	67.03	61.13	59.06
Fr-Wikipedia (baseline)	30.04	33.84	37.41	44.91	65.56	70.62	67.48	67.92	57.87	57.51
<u>BILINGUAL</u>										
En-Fr-Multidomain (baseline)	17.55	27.86	20.25	42.24	63.72	68.54	58.33	67.36	51.11	54.68
En-Fr-Wikipedia (baseline)	31.21	31.08	36.54	44.77	67.12	69.12	66.44	67.89	50.48	54.01
<u>CROSS-LINGUAL</u>										
En-Multidomain	26.52	28.73	31.79	39.23	62.99	70.04	55.12	65.82	52.00	54.22
En-Wikipedia (baseline)	27.95	29.66	32.78	41.35	63.54	70.91	65.41	66.74	51.78	53.61

Table 3: F1 scores for **BabyBERTa (BB)** vs. **RoBERTa (RB)** across tasks using **multi-domain pretraining corpora** ($\approx 10M$ words). Sections indicate the language in which the model was *tested*; downstream fine-tuning was always performed in that same language. In the bilingual setup, $\approx 1.25M$ words are used in each of the languages. * indicates statistically significant improvements over the corresponding monolingual baseline ($p < 0.05$, paired bootstrap test across seeds).

6 Further Analysis

6.1 Architectural Generalization

To verify that our findings are not specific to BabyBERTa, we conducted supplementary experiments with T5-tiny and LTG-BERT (see Appendix C, Tables 5, 6).

T5-tiny (Mueller and Linzen, 2023), an encoder-decoder architecture effective for learning hierarchical syntactic features from child-directed speech, reproduces our core patterns: Wikipedia consistently outperforms CHILDES on semantic tasks, while multidomain data benefits grammatical competence. Its overall performance is lower, as expected given its compact size, but the qualitative trends remain unchanged.

LTG-BERT, the winning model of the BabyLM Challenge, achieves higher absolute scores while maintaining the same relative patterns observed with BabyBERTa: Wikipedia advantages for semantic tasks, multidomain benefits for grammar (CLAMS), bilingual advantages for XNLI, and general monolingual dominance at 10M tokens. Despite architectural innovations, LTG-BERT does not alter the direction of effects across configurations.

The consistency across BabyBERTa, RoBERTa, T5-tiny, and LTG-BERT indicates that our findings reflect fundamental properties of multilingual learning in resource-constrained settings, rather than artifacts of a particular architecture.

6.2 Interaction Between Child-Directed Speech and Wikipedia

We examine whether exposure to child-directed speech (CHILDES) interacts beneficially with Wikipedia training by combining the two data sources at equal scale (1.25M tokens each). Across languages, models trained on the combined data systematically outperform CHILDES-only training on semantic and entailment tasks and partially recover the performance gap relative to Wikipedia-only baselines.

For example, in monolingual English, combined training improves QAMR performance over CHILDES-only (51.95 vs. 38.54), while in French the gains are larger on transfer-sensitive tasks such as XNLI (60.36 vs. 28.27). Importantly, we observe the directional trends when the order of exposure is reversed (Wikipedia followed by CHILDES) and when the combined corpus is shuffled, indicating

Model (Baseline)	SQuAD	QAMR	QASRL	XNLI	CLAMS
Tested in English					
RoBERTa-base (EN)	80.12	86.54	91.11	88.52	77.68
CamemBERT-base (FR)	14.28	18.84	24.23	62.12	58.34
Tested in French					
RoBERTa-base (EN)	16.35	21.32	43.12	53.23	62.47
CamemBERT-base (FR)	67.94	72.92	80.85	79.56	76.92

Table 4: Baseline results for the **original pretrained RoBERTa-base** (English) and **CamemBERT-base** (French) models. These off-the-shelf baselines are distinct from the RoBERTa variants retrained on our 2.5M-token datasets. All downstream tasks are fine-tuned and tested in the same language.

that the observed effect is not order-specific but arises from the interaction between conversational and encyclopedic data.

While combined training does not consistently exceed the strongest Wikipedia-only baseline on semantic tasks, it yields robust improvements over CHILDES-only models and mitigates transfer losses in cross-lingual settings. Full numerical results for both exposure orders are reported in Appendix D, Table 7.

7 Conclusion

This work presents the first systematic investigation of multilingual training in developmentally plausible language models, extending BabyBERTa to English-French scenarios. We establish fair cross-linguistic comparisons by designing parallel corpora across two distinct data types: *child-directed speech* (\approx 2.5M words) and *multi-domain developmental corpora* (\approx 10M words). In addition, we contribute new multilingual resources, including the English and French multi-domain training corpora and French versions of QAMR and QASRL.

Our results reveal context-dependent effects of multilingual training. Bilingual pretraining yields notable gains for textual entailment (XNLI), disproportionately benefiting French, while maintaining competitive performance on other tasks. Wikipedia training favors semantic tasks, whereas child-directed speech provides advantages for grammatical competence in monolingual settings. We further show that exposure to child-directed speech positively interacts with Wikipedia training, particularly for French and for transfer-sensitive tasks.

These patterns are consistently observed across BabyBERTa, RoBERTa, T5-tiny, and LTG-BERT, indicating that the findings extend across the tested architectures considered here. Finally, the modest

performance gap between our compact models and the much larger LTG-BERT supports the viability of efficient multilingual approaches for resource-constrained applications.

Limitations

Our study is subject to several limitations that open directions for future work. First, we focused exclusively on English and French as our target languages. Extending the analysis to additional languages — particularly those with different morphological typologies and varying data availability will permit the exploration of the generality of our findings.

Second, our architectural scope was primarily focused on RoBERTa-style models (including BabyBERTa and LTG-BERT, which are close architectural variants), and in supplementary analysis incorporated T5-tiny as an encoder-decoder alternative. The extension of our work to additional architectures, such as GPT-style decoder-only models, will further analyze the interaction between pretraining strategies and the model design.

Ethics Statement

The language acquisition data we are using in this work originally appear in the TalkBank system², with includes CHILDES, and where all contributions have received an IRB approval. Our own work on the data has been approved by the Ben-Gurion University of the Negev Ethics committee.

Acknowledgements

We thank the anonymous reviewers for their helpful comments. We also acknowledge the NICHD HD082736 grant support for CHILDES. Our work was supported in part by grants from the Israeli

²<https://childe.s.talkbank.org/>

Ministry of Innovation, Science & Technology (#000519) and from the Data Science Research Center at Ben-Gurion University of the Negev.

References

- Ahmed Abdelali, Francisco Guzman, Hassan Sajjad, and Stephan Vogel. 2014. [The AMARA corpus: Building parallel language resources for the educational domain](#). In *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, pages 1856–1862, Reykjavik, Iceland. European Language Resources Association (ELRA).
- Tatsuya Aoyama and Nathan Schneider. 2024. [Modeling nonnative sentence processing with L2 language models](#). In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages 4927–4940, Miami, Florida, USA. Association for Computational Linguistics.
- Bastian Bunzeck, Daniel Duran, and Sina Zarrieß. 2025. [Do construction distributions shape formal language learning in German BabyLMs?](#) In *Proceedings of the 29th Conference on Computational Natural Language Learning*, pages 169–186, Vienna, Austria. Association for Computational Linguistics.
- Georges Gabriel Lucas Charpentier and David Samuel. 2023. [Not all layers are equally as important: Every layer counts BERT](#). In *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*, pages 238–252, Singapore. Association for Computational Linguistics.
- Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. [XNLI: Evaluating cross-lingual sentence representations](#). In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 2475–2485, Brussels, Belgium. Association for Computational Linguistics.
- Anita Gelboim and Elior Sulem. 2025. [TafBERTa: Learning grammatical rules from small-scale language acquisition data in Hebrew](#). In *Proceedings of the First BabyLM Workshop*, pages 76–90, Suzhou, China. Association for Computational Linguistics.
- Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015. [Question-answer driven semantic role labeling: Using natural language to annotate natural language](#). In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pages 643–653, Lisbon, Portugal. Association for Computational Linguistics.
- Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. 2016. [The goldilocks principle: Reading children’s books with explicit memory representations](#). In *Proceedings of the International Conference on Learning Representations (ICLR)*.
- Philip A. Huebner, Elior Sulem, Fisher Cynthia, and Dan Roth. 2021. [BabyBERTa: Learning more grammar with small-scale child-directed language](#). In *Proceedings of the 25th Conference on Computational Natural Language Learning*, pages 624–646, Online. Association for Computational Linguistics.
- Philip A Huebner and Jon A Willits. 2021. Using lexical context to discover the noun category: Younger children have it easier. In *Psychology of learning and motivation*, volume 75. Elsevier.
- Ali Kabbadj, Robert Plana, Mehdi Brahim, and Alain Mangeot. 2020. [French machine reading for question answering](#). LinkedIn article.
- Bill Yuchen Lin, Seyeon Lee, Xiaoyang Qiao, and Xiangang Ren. 2021. [Common sense beyond English: Evaluating and improving multilingual language models for commonsense reasoning](#). In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pages 1274–1287, Online. Association for Computational Linguistics.
- Pierre Lison and Jörg Tiedemann. 2016. [OpenSubtitles2016: Extracting large parallel corpora from movie and TV subtitles](#). In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*, pages 923–929, Portorož, Slovenia. European Language Resources Association (ELRA).
- Brian MacWhinney. 2000. *The CHILDES Project: Tools for analyzing talk, transcription format and programs*, volume 1. Psychology Press.
- Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric de la Clergerie, Djamel Seddah, and Benoît Sagot. 2020. [CamemBERT: a tasty French language model](#). In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7203–7219, Online. Association for Computational Linguistics.
- Julian Michael, Gabriel Stanovsky, Luheng He, Ido Dagan, and Luke Zettlemoyer. 2018. [Crowdsourcing question-answer meaning representations](#). In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)*, pages 560–568, New Orleans, Louisiana. Association for Computational Linguistics.
- Aaron Mueller and Tal Linzen. 2023. [How to plant trees in language models: Data and architectural effects on the emergence of syntactic inductive biases](#). In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 11237–11252, Toronto, Canada. Association for Computational Linguistics.

- Aaron Mueller, Garrett Nicolai, Panayiota Petrou-Zeniou, Natalia Talmina, and Tal Linzen. 2020. **Cross-linguistic syntactic evaluation of word prediction models**. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 5523–5539, Online. Association for Computational Linguistics.
- Miyu Oba, Tatsuki Kurabayashi, Hiroki Ouchi, and Taro Watanabe. 2023. **Second language acquisition of neural language models**. *Preprint*, arXiv:2306.02920.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. **SQuAD: 100,000+ questions for machine comprehension of text**. In *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pages 2383–2392, Austin, Texas. Association for Computational Linguistics.
- Nils Reimers and Iryna Gurevych. 2019. **Sentence-BERT: Sentence embeddings using Siamese BERT-networks**. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.
- Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. 2020. **Masked language model scoring**. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 2699–2712, Online. Association for Computational Linguistics.
- David Samuel, Andrey Kutuzov, Lilja Øvreliid, and Erik Velldal. 2023. **Trained on 100 million words and still in shape: BERT meets British National Corpus**. In *Findings of the Association for Computational Linguistics: EACL 2023*, pages 1954–1974, Dubrovnik, Croatia. Association for Computational Linguistics.
- Zhewen Shen, Aditya Joshi, and Ruey-Cheng Chen. 2024. **BAMBINO-LM: (bilingual-)human-inspired continual pre-training of BabyLM**. In *Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics*, pages 1–7, Bangkok, Thailand. Association for Computational Linguistics.
- Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018. **GLUE: A multi-task benchmark and analysis platform for natural language understanding**. In *Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP*, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.
- Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mosquera, Bhargavi Paranjape, Adina Williams, Tal Linzen, and Ryan Cotterell. 2023. **Findings of the BabyLM challenge: Sample-efficient pretraining on developmentally plausible corpora**. In *Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning*, pages 1–34, Singapore. Association for Computational Linguistics.
- Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and Samuel R. Bowman. 2020. **BLiMP: The benchmark of linguistic minimal pairs for English**. *Transactions of the Association for Computational Linguistics*, 8:377–392.
- Ethan Gotlieb Wilcox, Michael Y. Hu, Aaron Mueller, Alex Warstadt, Leshem Choshen, Chengxu Zhuang, Adina Williams, Ryan Cotterell, and Tal Linzen. 2025. **Bigger is not always better: The importance of human-scale language modeling for psycholinguistics**. *Journal of Memory and Language*, 144:104650.
- Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. **A broad-coverage challenge corpus for sentence understanding through inference**. In *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pages 1112–1122, New Orleans, Louisiana. Association for Computational Linguistics.
- Aditya Yadavalli, Alekhya Yadavalli, and Vera Tobin. 2023. **SLABERT talk pretty one day: Modeling second language acquisition with BERT**. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 11763–11777, Toronto, Canada. Association for Computational Linguistics.
- Yahan Yang, Elior Sulem, Insup Lee, and Dan Roth. 2023. **Bootstrapping small & high performance language models with unmasking-removal training policy**. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 457–464, Singapore. Association for Computational Linguistics.
- Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. **A robustly optimized BERT pre-training approach with post-training**. In *Proceedings of the 20th Chinese National Conference on Computational Linguistics*, pages 1218–1227, Huhhot, China. Chinese Information Processing Society of China.

A Dataset Details

This appendix provides additional procedural details for dataset construction and preprocessing.

A.1 Pre-training Data

All pre-training corpora are constructed using identical preprocessing pipelines across English and French. Text is normalized using Unicode normalization, lowercased, and sampled at the sentence level until the desired token count is reached. Punctuation and discourse markers are preserved.

For bilingual variants, datasets are constructed as balanced combinations of English and French data, with equal token counts per language.

A.2 Fine-tuning and Evaluation Data

SQuAD and FQuAD. SQuAD1.1 is a widely used English reading comprehension dataset with over 100k QA pairs from Wikipedia (Rajpurkar et al., 2016). For French evaluation, we adopt FQuAD1.0 (Kabbadj et al., 2020), a high-quality translation of SQuAD produced with Google Translate and refined through alignment procedures. Post-processing ensured that translated answers matched their contexts, with Levenshtein distance and Jaro-Winkler similarity used to adjust misaligned spans.

QASRL and Fr-QASRL. QASRL evaluates semantic role understanding through natural QA pairs (He et al., 2015). We created Fr-QASRL by translating the original dataset into French and applying a back-translation validation step. Following Lin et al. (2021), sentences with semantic similarity (using SentenceBERT; Reimers and Gurevych, 2019) below 0.75 were excluded, preserving fidelity to the source.

QAMR and Fr-QAMR. QAMR tests meaning representation through QA pairs (Michael et al., 2018). We produced Fr-QAMR using the same translation and validation process as Fr-QASRL, ensuring high-quality semantic preservation.

XNLI. XNLI extends MultiNLI to 15 languages, including French (Conneau et al., 2018). It requires models to classify premise–hypothesis pairs into entailment, contradiction, or neutrality, making it an important benchmark for cross-lingual reasoning.

CLAMS. CLAMS (Mueller et al., 2020) evaluates grammatical competence across English and French. It consists of minimal pairs that differ only in grammaticality, with a focus on subject–verb agreement. As a diagnostic tool, it requires no fine-tuning and directly assesses models’ syntactic sensitivity from pretraining.

^{*}Claire French Dialogue Dataset (CFDD) and British National Corpus (dialogue portion).

[†]<https://github.com/jchwenger/dataset.gutenberg-language> – Gutenberg texts filtered by author metadata in English and French.

[‡]<https://www.vikidia.org> – simplified encyclopedia used in both French and English.

B Methodological Details

B.1 Experimental Design

For child-directed speech corpora, we fix dataset size at 2.5M tokens, constrained by the availability of French CHILDES. This ensures comparability across English and French, and across monolingual, bilingual, and cross-lingual setups. We additionally downsample to 1.25M tokens to examine within-scale effects. For multi-domain experiments, we follow the BabyLM framework with 10M-token datasets plus Wikipedia-only baselines. Each experiment is repeated with three random seeds.

B.2 Language Pairing Strategies

Monolingual. Models are pretrained and fine-tuned in the same language. We include pure CDS, pure Wikipedia, and mixed CDS–Wikipedia corpora. To test order effects, we vary exposure sequences (CHILDES→Wikipedia vs. Wikipedia→CHILDES).

Bilingual. Pretraining simultaneously includes English and French data (both CDS and multi-domain). Fine-tuning and evaluation remain monolingual, allowing us to isolate the effects of multilingual exposure.

Cross-lingual. Pretraining is performed in one language, while fine-tuning and evaluation occur in the other. We evaluate both directions (English→French, French→English).

B.3 Baseline Comparisons

For CDS-scale experiments (\approx 2.5M tokens), we train **RoBERTa** models on the same datasets used for **BabyBERTa**, ensuring identical pretraining configurations for controlled architectural comparison. In addition, we evaluate the **original pre-trained RoBERTa-base** (English) and **original CamemBERT-base** (French) models fine-tuned on our downstream tasks to establish strong reference baselines (Table 4).

B.4 Evaluation Framework

Metrics. F1 is used for QA tasks (SQuAD, QAMR, QASRL), accuracy for XNLI, and pseudo-likelihood scoring for CLAMS.

Statistical Testing. To account for stochastic variation, we train each configuration three times with different random seeds. We apply bootstrap hypothesis testing with $p < 0.05$ to evaluate significance.

Evaluation Protocol. Fine-tuning and evaluation are always conducted in the same language. For cross-lingual setups, this isolates transfer effects by comparing against monolingual baselines under identical evaluation conditions.

C Architectural Generalization

The full results for T5-tiny and LTG-BERT are presented respectively in Tables 5 and 6.

D Interaction Between Child-Directed Speech and Wikipedia

The full results for the Interaction Between Child-Directed Speech and Wikipedia analysis are presented in Table 7.

Model	Question Answering			
	SQuAD	QAMR	QASRL	XNLI
Fine-tuned in English				
CROSS-LINGUAL				
Fr-CHILDES	6.48	10.36	19.81	17.32
Fr-Wikipedia	10.06	16.39	21.45	19.54
Fr-CHILDES-Wikipedia	7.30	15.45	20.41	18.88
Fr-Multidomain Corpus 10M words	7.42	14.12	20.13	17.01
MONOLINGUAL				
En-CHILDES	7.64	13.80	27.98	19.08
En-Wikipedia	12.28	17.63	30.68	22.34
En-CHILDES-Wikipedia	10.39	17.73	25.42	24.33
En-Multidomain Corpus 10M words	11.34	19.51	25.22	23.91
BILINGUAL				
En-Fr-CHILDES	6.04	13.25	28.04	18.91
En-Fr-Wikipedia	11.71	18.43	27.56	23.29
Fine-tuned in French				
MONOLINGUAL				
Fr-CHILDES	6.15	10.19	22.09	10.05
Fr-Wikipedia	10.45	15.34	26.08	15.67
Fr-CHILDES-Wikipedia	8.18	12.43	23.65	17.67
Fr-Multidomain Corpus 10M words	8.36	12.26	23.24	19.02
BILINGUAL				
En-Fr-CHILDES	6.44	9.90	22.73	16.32
En-Fr-Wikipedia	11.83	15.78	27.88	17.00
CROSS-LINGUAL				
En-CHILDES	4.58	9.27	20.09	12.12
En-Wikipedia	9.50	13.23	25.23	14.45
En-CHILDES-Wikipedia	8.84	10.19	23.32	18.02
En-Multidomain Corpus 10M words	8.10	10.31	23.78	16.98

Table 5: F1 scores for **T5 tiny** models across QA tasks. Results are grouped by fine-tuning language and model training setup (monolingual, cross-lingual, and bilingual). This represents an additional analysis using a different encoder-decoder architecture to complement our main BabyBERTa findings.

Model	Question Answering			TE XNLI	Grammar CLAMS		
	SQuAD	QAMR	QASRL				
Fine-tuned in English							
MONOLINGUAL							
En-Multidomain Corpus words	32.15	54.02	86.45	65.21	57.14		
En-Wikipedia	41.83	56.92	88.77	66.42	51.20		
BILINGUAL							
En-Fr-Multidomain Corpus words	17.95	26.41	69.74	66.28	53.08		
En-Fr-Wikipedia	29.65	56.81	75.12	72.10	52.44		
CROSS-LINGUAL							
Fr-Multidomain Corpus words	28.40	44.18	82.14	59.03	51.74		
Fr-Wikipedia	31.52	48.66	84.59	67.92	52.60		
Fine-tuned in French							
MONOLINGUAL							
Fr-Multidomain Corpus words	30.38	40.77	68.19	67.11	62.85		
Fr-Wikipedia 10M	31.55	38.64	66.02	68.27	54.13		
BILINGUAL							
En-Fr-Multidomain Corpus words	18.82	21.93	64.58	59.41	52.63		
En-Fr-Wikipedia	32.77	38.08	68.24	67.53	54.50		
CROSS-LINGUAL							
En-Multidomain Corpus words	27.88	33.54	64.27	56.81	53.42		
En-Wikipedia	29.14	34.95	64.91	66.74	52.21		

Table 6: F1 scores for **LTG-BERT** across all tasks, using **10M** pretraining data (including Wikipedia and mixed-domain corpora). LTG-BERT was the winning model from the BabyLM Challenge that achieved the best results through architectural innovations.

Model (pretrain)	SQuAD	QAMR	QASRL	XNLI	CLAMS
Tested in English					
MONOLINGUAL					
En-CHILDES-Wikipedia	31.42	51.95	87.01	61.19	58.42
CROSS-LINGUAL					
Fr-CHILDES-Wikipedia	27.18	41.52	79.93	58.43	48.30
Tested in French					
MONOLINGUAL					
Fr-CHILDES-Wikipedia	29.90	39.08	66.80	60.36	57.80
CROSS-LINGUAL					
En-CHILDES-Wikipedia	27.01	32.46	63.06	55.04	51.17

Table 7: Results of **Interaction Between Child-Directed Speech and Wikipedia** on **BabyBERTa (BB)** across all evaluation tasks.